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Waves and wave resistance of thin bodies moving at 
low speed : the free-surface nonlinear effect 

By G. DAGAN 
Israel Institute of Technology, Haifa, Israel 

(Received 8 June 1973 and in revised form 5 November 1974) 

The lincwized theory of free-surface gravity flow past submerged or floating 
bodies is based on a perturbation expansion of the velocity potential in the 
slenderness parameter 6 with the Froude number F kept fixed. It is shown that, 
although the free-wave amplitude and the associated wave resistance tend to zero 
as F -+ 0, the linearized solution is not uniform in this limit: the ratio between the 
second- and first-order terms becomes unbounded as P-t 0 with E fixed. This non- 
uniformity (called ‘the second Froude number paradox’ in previous work) is 
related to the nonlinearity of the free-surface condition. Criteria for uniformity 
of the thin-body expansion, combining E and F ,  are derived for two-dimensional 
flows. These criteria depend on the shape of the leading (and trailing) edge: as the 
shape becomes finer the linearized solution becomes valid for smaller F .  

Uniform first-order approximations for two-dimensional flow past submerged 
bodies are derived with the aid of the method of co-ordinate straining. The 
straining leads to an apparent displacement of the most singular points of the 
body contour (the leading and trailing edges for a smooth shape) and, therefore, 
to an apparent change in the effective Froude number. 

1. Introduction 
The linearized theory of free-surface gravity flow past submerged or floating 

bodies is based on the assumption that the body causes a small disturbance to 
a uniform flow. Such an approximation is incorporated in a systematic asymp- 
totic expansion of the velocity potential by assuming that E (beamllength for 
a thin ship, draftllength for a flat ship, body lengthlsubmergence depth in the 
case of deep submergence) tends to zero while the Froude number F (based on 
body length or submergence depth, respectively) remains fixed. 

In previous work (Salvesen 1969; Dagan 1972a) it  has been shown that it is 
not legitimate to let F+ 0 for fixed E in the linearized solution, or in other words 
that the usual approximation is not uniform in F.  Two ‘small Froude number 
paradoxes’ have been formulated in this context (Dagan 1972b) and ad hoc 
uniformization procedures have been suggested (Ogilvie 1968; Dagan 1972 b), 
leading to a quasi-linearization of the free-surface condition. It has been proved 
(Tuck 1965; Salvesen 1969; Dagan 1972a) that the small Froude number non- 
uniformity is associated with the nonlinearity of the free-surface condition. In  
all cases detailed computations have been carried out only for two-dimensional 
flows. 
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FIQURE 1 

In  the present study the problem of the small Froude number non-uniformity 
is attacked in a different way, and the influence of the bluntness of the bow on the 
small F solution is discussed in detail. 

It is worthwhile to mention here that the problem is related mainly to three- 
dimensional applications, since a large class of ships operate at relatively low 
Froude numbers and in most such cases the usual theory of wave resistance has 
been found to be unsatisfactory. We carry out, nevertheless, the study of the two- 
dimensional flow because the use of the powerful tool of analytical functions in 
this case permits us to clarify some matters of principle much more easily than 
we could in three dimensions. 

Obviously, there are various factors which may be related to the discrepancy 
between the wave resistance measured in experiments and that predicted by the 
linearized theory, like viscous effects or the bow breaking wave. This should not 
deter us, however, from seeking a consistent solution for the wave resistance 
within the framework of potential flow theory. 

2. Two-dimensional flow past submerged bodies 
2.1. The thin-body expansion 

We consider a steady uniform flow from infinity past a submerged body (figure 1). 
Let z' = x'+iy' be a complex variable, wf = d - i v '  the complex velocity, 
f' = 4' +i$' the complex potential, 7' the free-surface elevation, 2L' the body 
length, h' the submergence depth, 2T' the body thickness and U' the velocity of 
the uniform flow. First, variables are made dimensionless by referring them to 
L' and U' ,  i.e. z = z'/L', f =f'/L'U', w = w'/U', h = h'/L', e = T'/L' and 
F = U'/(gL')i. 

If the analytical function f(z; e, h, F )  is expanded in an asymptotic series 
f = -  2 +efl(z; h, F )  +ey2(z; h, F )  + .. . (1) 

for small 8, the following sets of equations are obtained for fl and fi from the 
expansion of the exact equations (Wehausen & Laitone 1960): 
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where 7 = €7, + e27, + . . . and y = - h _+ et(x) is the equation of the body profile, 
assumed to be symmetrical for the sake of simplicity; 

Im (iF2df,/dz -f2) + P,(x) = F~($U? + &J;) - B4u, av,/ax } (Y = 01, (61, (7) 
7 2  = @2+2l',u, 

f ,+O (X-+-co, y-+ --co), (8)  

(9) 

In  addition, a Kuttdoukowsky condition must be imposed in the case of 

It can be shown (Salvesen 1969) that far behind the body the stream function 

@,(x, -h+O)-@,(x, -h-0)  = -%,t (1.1 < 1, y = -h) .  

a sharp trailing edge in order to make the circulation unique. 

contains the expressions 

@, = Im (a, e-i") (x-+--co), (10) 
$, = Im (a, e-i") + constant (x+ - co). (11) 

D = ( 2F2)-l I €a, + €,a2/ ,, (12) 

D = e 2 ~ , + 8 ~ 2 + ~ ( e 4 )  (13) 
we have D, = (2F2)-l /all2, D, = P 2 R e  (a,3,). (14) 

The wave resistance is given by 

where D = D'/+p'Uf2Lf. Hence, by expanding D as 

The method of determining f, and f,, the solutions of (2)-(8), is well known. 
Let wi and wy be the first-order linearized solutions for the velocity of flow past 
the body and its image, respectively, in an infinite domain, i.e. 

where z, = x, + iy, ( lxsl < 1, y, = -h) is the co-ordinate of a point along the body 
contour, R e r  = dt/dx 

and 

Then the solution for fi may be written as 

where 

the h plane being cut along Im h = 0, Re h > 0, while the p plane is cut along 
Im ( p  + g )  = 0, Re ( p  + g )  > 0. The function w in (17) is regular in the upper 
half'rr plane while w: is singular along the slit 1x1 < 1, y = h. Hence the integra- 
tion in (17) may be replaced by an integral around the slit which leaves in (17) 
only the jump 27(x,) in the imaginary part of w;". 

The second-order solution satisfying (6) and regular in the lower half-plane 
may be written as 

2--(T 
f2(z) = P , ( t ~ ) w ( ~ ) d t ~  (Imz < Imcr). 
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We disregard here the contribution of the body correction term, related to (9), 
as well as the contribution of the vorticity, related to the cross-flow induced by 
the image singularities of fl upon the body contour, because these terms lead to 
less singular contributions to f2, as P+ 0, than the free-surface condition. 

Circulation associated with the Kutta-Joukowsky condition a t  a sharp trailing 
edge of a body of finite thickness may play an important role (Salvesen 1969). 
However, as the present two-dimensional solution serves only as a tool for 
a better understanding of the thin-ship problem, we consider here solely the 
thickness effect. 

2.2 .  The second-order solution (free-surface eflect) 
We are going now to transform (19) such that f2 may be expressed as an integral 
over analytical functions of cr. First, we have, by integration by parts, 

(20 )  

u1 and vl, which are obtained from (1 7) )  may be written along the real axis as 

( 2 2 )  
where V is defined [cf. (q] as 

Substituting (21) and ( 2 2 )  in (20 )  and integrating by parts we obtain f2 (for 
details see appendix) in its final form as 

F2 (w, - zui - w ; ) ~  +-I 2 n  2-a d r ,  (24) 

where terms which tend to zero for x+-m have been neglected. 

2.3. Illustration of results: the source-sink body 
The complete solution. Rather than pursuing a general discussion of the second- 
order solution in the limit F -+ 0, we begin with a simple case which can be solved 
in a closed form. 

We consider the closed body generated by a source at zt = 1 - ih and a sink at 
zt = - 1 -ih. In  view of our interest in three-dimensional applications we con- 
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sider only the thickness effect. This is the first-order representation of a straight 
thin body with blunt leading and trailing edges. 

Following now (15)-( 17) and (24) we have 

(28) 

The integration in (28) can be carried out exactly. The first term, resulting from 
wi-w?, contributes the residues a t  a = Zz and a = Lit. The last terms are more 
intricate, but still tractable, at  least for x+- co. 

We consider now the expansions (25) and (28) offi andf, for small P. 
The near-$eld solution. For F2-+ 0, w[(z--5$/FZ] can be expanded in an asymp- 

totic series for fixed z as follows: 

This expansion is valid, however, only for / z  - Z,l S and - 7r +a < arg (z  - Zl) < 0, 
where S and 8 are arbitrarily small fixed quantities (for details see the discussion 
of the related exponential integral function in Copson 1965, p. 25). 

Substitution of (29) and the similar expansion of w [ ( z  -St)/F2] into wl, obtained 
by differentiation of fl, as given by (25 ) ,  yields 

w1 = wi+w,"+O(F2) (-n+8 < arg(z-5,) < 0). (30) 

Hence, ujl degenerates at  zero order into the rigid-wall solution, i.e. the solution 
for flow past the body in the presence of a rigid wall at  y = 0. However, this limit 
is not uniform and in particular is not valid far behind the body, i.e. for x-+ - 00 

with y kept fixed. For arg (z - Z1) > - n + 8 expansion (29) has to be supplemented 
by the term 27ri exp ( 5 iiz/F2) exp ( - iz/F2),  which represents precisely the trailing 
waves. For this reason (30) may be called the near-field expansion. 

The rigid-wall solution, and the subsequent terms of (30), may be obtained also 
by first expanding the linearized free-surface condition ( 2 )  for F2+ 0 and then 
solving term by term. In  contrast with the previous procedure, however, (30) is 
thus obtained as a solution uniformly valid in the entire z plane. Although the 
wave term is exponentially small for y < h, compared with the powers of F2 in (30), 
it is the only one which does not tend to zero for x --z - co, y fixed and which is 
associated with wave resistance. 
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Similarly, the near-field expansion off2(z) for P2 -+ 0 may be obtained from (28) 
by expanding o [ ( z  - (r)/F2] and computing the residues at Zr and Xt.  The result 
is O(P2) and is a rational function of z with poles of different orders a t  z = Zl and 
z = X t .  Hence, sfi is O(s) while s”fi is O ( e 2 P )  and the near-field expansion off is 
uniform as P2 --f 0. 

The free-wave potential. The free-wave potential is obtained from (25) and (28) 
by letting x-f-m. The first-order solution (25) yields 

fy = 2i[exp (iZl/-F2) - exp (iZt/P2)] exp ( - iz/F2) 
= - 4(sinP-,) exp ( -  h/-F2) exp ( -  iz/-F2). (31) 

In  the second-order solution (28) w [ ( z  - ( T ) / F ~ ]  is first replaced by 

Integration then yields (for details see Dagan 1973) 
fr r + P 2 [ ( b 2  + ic,) exp (iZl/F2) 

27i-i exp ( - iz/P2) exp (icr/F2). 

+ (b ,  - ic,) exp (iZt/F2)] exp ( - i z /P2)  + O(exp ( - h/F2), exp ( - 2h/F2)), (32) 

where b - ,-77 - ( 2 +  1 2 C + l n 4 + 1 n G ) ,  c2 = 

and C is Euler’s constant. If h < 1, c, N 0 and (32) becomes 

Hence, the amplitude of the free waves, by (lo), (11),-(31) and (32), is given by 
€al = O(sexp ( -h/P2)) ,  

@a2 = O(e2exp ( - h/P2)/F2),  
(34) 
(35) 

and although for P2-+0 with h and e fixed both €al and s2a2 tend to zero, their 
ratio becomes unbounded like e/F2. 

This non-uniformity of the thin-body expansion has been described previously 
by Salvesen (1969). Equation (35) shows that the usual linearized theory is 
valid, for the source-sink body, only if €IF2 = O ( l ) ,  i.e. for large Froude numbers 
based on thickness. 

I 

2.4. Generalization for bodies of different shapes 
Since for an arbitrary thickness distribution w: and wy are represented by the 
source distributions (15) and (16) the results of the previous section may be 
extended to thin bodies of any shape. It is easy to ascertain that the near-field 
solution, based on (17) and (29), has the rigid-wall approximation as a leading 
term and is uniform in the sector 77- 6 < arg ( x  - 1 - ih) < 0 as F2-t  0. 

The non-uniformity of the expansion for the free waves depends essentially 
on the blbntness of the leading edge (for the sake of simplicity we consider bodies 
of smooth shape and assume that viscous effects ensure anyway that the trailing 
edge has a fine shape). The free waves are represented at  first order by 

fy = 2 exp ( - iz/P2) wy(a) exp ( iv /F2)  dg, (36) $ 
which has been obtained from (17), the integration path circumventing the 
contour of the image of the body - I < (T - ih < 1 in the upper half-plane. For 
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Shape Order 
of the The of the 

leading singularity Order of a, Order of a2 Order of straining 
edge of w:' for F 3 0 for F + 0 E2a2/cal &, 
3 (z--l- ih)-l  exp(-h/FZ) exp ( - h/F2)/Fz €IF2 & 

) (z - 1 - ih)* Fexp ( - h / ~ 2 )  exp ( - h / P )  €IF €F 
> h ( z -  1-ih) FZ( lnF)exp( -h /Fz )  exp( -h/Fa)F21n2F d n F  EFzln F 

TABLE 1 

F2+ 0 the integral in (36) may be expanded in the usual manner, the lowest-order 
term being provided by the highest singularities of wy(a), those at u = i- 1 + ih. 

We have seen that for a source-like blunt shape a, = O(exp ( -h/F2)).  For 
a leading edge of elliptical shape (i.e. wy I/(.-- 1 -ih)&), (36) shows that 
a, = O(F exp ( - h / P ) ) .  Similarly, for a wedge-like shape (wy N In (a- 1 - ih))  
we obtain a, = O(F21n F exp ( - h / P ) )  (see Lighthill 1964, p. 43). 

To estimate the order of the amplitude of the free waves a t  second order in E 

we must use the expression (24) for f2 with w [ ( z -  a)/F2] replaced by 

27ri exp ( - iz/F2) exp (ia/F2). 

The computation is facilitated by the observation, supported by the detailed 
solution of the previous section, that the order of the lowest-order term in F is 
determined by the term [wy(a)I2 in the integral for f 2 ( z )  in (24), the other terms 
contributing a t  an equal or higher order. Hence, the order of fr is determined 
by integrals of the type 

exp ( - iz/F2) [w:(a)l2 exp ( ia/F2)  d u .  (37) f 1 

We have, therefore, for an elliptical leading edge a2 = O(exp ( - h/F2)) and for 
a wedge-like shape a2 = O(F21n2 F exp ( - h/F2)). In  each case the far-wave 
amplitude, and consequently the wave resistance, is not uniform for F2+ 0, the 
non-uniformity becoming, however, weaker as the shape of the edge becomes 
finer. The results are collected in table 1.  The last column but one summarizes 
the main findings: the quantity appearing there has to be small in order to ensure 
that the usud linearized thin-body approximation is uniform. It is worthwhile 
mentioning that in all the examples for which detailed computations have been 
carried out so far (Tuck 1965, for a circular cylinder; Salvesen 1969, for a hydro- 
foil; Dagan 1972a, for a source), the shapes were blunt. 

2.5. Derivation of uniform small Froude number solutions 
Procedures for rendering the first-order solution uniform have been suggested 
previously by Ogilvie (1968) and Dagan (1 972 b )  (in both cases the more ambitious 
task of solving the problem of small Froude number flow past a body of finite 
thickness was undertaken). The constant coefficient of df,/dz in (2) was replaced 
by a variable one, equal to the velocity of the first-order rigid-wall solution at  
y = 0. Although the solution obtained this way is in principle uniform, it can be 
shown (Dagan 1973) that additional terms, besides the rigid-wall solution, have 
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to be incorporated in the coefficient of df,/dz in (2). Moreover, the procedure 
becomes extremely tedious in the case of three-dimensional flows (Dagan 1973). 
An alternative method, co-ordinate straining, is presented here. 

We assume that the small Froude number non-uniformity is a result of 
co-ordinate straining. Lighthill’s method (see Van Dyke 1964, p. 99) implies 
an infinitesimal straining of the physical plane and derives the straining function 
from the equations of flow. We adopt here a modified technique applied by 
Van Dyke (1964, p. 72) to the case of inviscid flow past airfoils: we carry out 
the straining in the solution, rather than in the equations, and determine the 
straining function from the requirement that the second-order term should not 
be more singular than the first-order term. In  the case of airfoils the solution 
becomes singular as the leading edge is approached, In  our case the free-wave 
potential is not uniform as F2-t 0; the two problems are therefore quite different. 

We consider the change of variables 

z = < + S Z ( C ) .  (38) 

The first-order potential (36) of the free waves becomes, in terms of the strained 
co-ordinate 5, 

where 5 = Es = X,-6Zs is the mapping of the image of the body axis 
z = 2, = xs + ih onto the C plane and Ct and cl map the co-ordinates of the trailing 
and leading edges, Zt = - I +ih and x1 = 1 +ih, respectively ( E l  = Zt- 6Zl, 

To determine the straining Sz(5)  = O(s)  we first expand the expression (39) for 
fy for F fixed and E = o(1). In  such an expansion terms of order 6 in (39) will 
result from the limits of the second integral, from 7(Es) 2nd from the expansion 
of [, in the denominator of the integrand. But only the latter expansion provides 
a term 0(e/P2),  regardless of whether the first two lead to terms O(6). Hence, the 
lowest-order terms for F -+ 0 are provided by 

gt = zt - 6Zt). 

In  other words the straining is manifest solely in a virtual displacement of the 
body singularities, with no change in their strength, as far as most singular terms 
(for F 3 0) are concerned. 

For 6Zs = O(e) and F fixed the integrand in (40) may be expanded as follows: 

7 f” = -;exp( 2e -$)Im d v I  1 dx,-exp(%) 

+:exp ( -$)Jm d(rexp ($)J1 dx,- 765, 

-m  -1 (T-zs F2 

--m -1 ( ( T - 5 J 2  
._ 1 

-1 
= - 4k exp ( - $) 1 T ( X J  exp (g) dx, 

1 

-1 
- $ exp ( - $) 1 7 ( x S )  exp (2) ax,. 
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The first term in (41) is precisely fy [see (36)]; the unknown straining function 
SZs is now determined from the requirement that the last term of (41) should 
cancel the term of lowest order in F off? [see (24)]. 

To determine SZ, in a simple way, advantage is taken of the fact that the terms 
of lowest order in F in (41) are associated with the singularities at  the edges (an 
intermediate point of discontinuity can be easily accounted for). What matters, 
therefore, is SZ, and SZt. Any continuous straining between the edges is acceptable 
as far as the most singular terms are concerned. Assuming, for the sake of 
simplicity, a linear straining we have 

(42) 65, = &(SZ, - 62,) xs + +(SZl + 85,). 
Substitution of (42) into the last term of (41) yields for the terms of lowest order 
in F 

- 

Equating to zero the sum of the terms of lowest order in 3' in fg [see (24) using 
(43)] gives a unique expression for 62, + 6Zt. An additional relationship is obtained 
from the requirement of separate cancellation of the leading- and trailing-edge 
waves (obviously, for a fine trailing edge, SZt = 0). 

To illustrate the method we consider the example of a source-sink body [see 
$2.3). The uniform first-order term of the free-wave exhansion becomes for 
x-+--o3, by using (17), (26), (27) and (38), 

Expanding, as in (41), for F fixed and E + O ,  we obtain' 

= fy - 26 exp ( - $) (sZ, exp (g) - 65, exp (!!)). 
(45) 

Hence, the fist term of (45) is fy [see (31)]. Consequently, the second-order term 
of the free-wave potential will be made up this time of f? [see (32)] plus the last 
term of (45), provided that the straining is of order E .  

We now determine SZ, and SZt from the requirement that the term of order 
c/Fa in the amplitude of the free waves, which is the origin of the small F non- 
uniformity, shohld vanish in the solution, separately for the source and the sink. 
We thus obtain 

(46) 
(47) 

SX, = ( - 4277) (b, + ic,), 
SZ, = ( + €/277) (b, - ic,), 

where b, and c, are given in (32). The uniform first-order solution, valid for 
E/P = O(l),  is easily derived from (44): 

fy = 2i exp ( - i z / P )  {exp [ i ( Z g  - 6&/F2] - exp [i(Zt - SZt)/F2]). (48) 
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By using (46) and (47) we finally obtain from (48) 

Hence the straining has the effect of an apparent increase of the length of the body 
by a factor of I + sb2/277. The virtual increase in the submersion depth is negligible 
for h < 1 [see (32)]. 

In  the general case (40) the estimates of $2.4 permit evaluation of the order 
of the straining 62, for different types of leading-edge singularities. The results 
are given in the last column of table 1. The straining becomes weak as the shape 
of the leading edge becomes fine, and it is P dependent except in the source-like 
case. 

2.6. Conclusions 
It has been shown that the slenderness parameter E appears in the expression for 
the potential of the free waves generated by a submerged body not only in the 
amplitude, but also as the ratio E/P2 in the wavenumber. As in other problems 
characterized by two scales (Cole P968), a power-series expansionin E doesnot yield 
a uniform solution unless e/F2 = o( 1); this last estimate has been sharpened and 
shown to depend on the nature of the singularity a t  the leading (and trailing) 
edge. 

The non-uniformity of the thin-body expansioninay be interpreted in relation 
to the linearized pressures sPJz) [see (1 7)] and e2P2(x) [see (6)] : although the ratio 
of the amplitudes tends to zero as EJ 0, P2(x) is more oscillatory than Pl(x) and 
the amplitude of the system of free waves associated with it is amplified as 
P ~ J  0. A more convenient interpretation is reached from inspection of the free- 
wave potentials as expressed by integrals along t%e image of the body contour, 
(36) and (37). The first-order free waves fy are generated by the singularities of 
the velocity wy of flow in an infinite domain [see (36)]; as the wavelength tends 
to zero the largest contributions originate from the points of largest slope of the 
profile, i.e. from the leading and trailing edges. At second order the free waves are 
associated with ( ~ 2 " ) ~  [see (37)], i.e. with a distribution which is more singular at 
the edges and which generates waves of higher amplitude depending on the 
singularity and on the wavelength. 

It is worthwhile to emphasize that the nonlinear effects considered here are 
essentially associated with the local disturbance pressure P2(x) and not with 
nonlinear interaction between the far free waves. 

As in the case of the airfoil, the method of co-ordinate straining suggests that 
the worsening of the singular behaviour at the edges may be removed by an 
infiniksimal displacement of the most singular points of the profile. When the 
wavelength of the free waves becomes of the same order as the straining, the 
amplitude is profoundly influenced by the straining. The straining leads to 
a virtual forward displacement (49) of the leading edge in the expression for the 
free waves and, correspondingly, to a shift of the resistance curve. Obviously, 
a power-series expansion in E of fw [see (49)], as implied by the usual thin-body 
theory, is legitimate only if e/P2 = o(l) ,  or under other criteria for finer shapes 
(table 1). 
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The analysis has been extended to three-dimensional flow past thin ships 
(Dagan 1973). Although the computations become much more complex, the 
results are similar to those presented here. For instance, in the case of a wedge-like 
bow the first- and second-order amplitudes of the free waves are O(eF2) and 
O(s2P2 In F ) ,  respectively. 

A more general approach to co-ordinate straining, which leads to solutions 
satisfying the free-surface and body conditions t o  second order a t  any Froude 
number, has been presented in two recent studies (Noblesse 1975; Dagan 1975). 

Appendix. Derivation off&) Isee (24)] 

and (22), 
The expression (20) for f 2  becomes, by substitution of u1 and v, from (21) 

+3w:(rl)w:(r2). - .(y)]). 
By integration by parts it can be shown that 

u-r1 - a--7, 2-u m 

By residues we also have 

w4(r1) drl = - Sniw:(a). (A 5) 
-m u-tiO-rl 

Substituting (A 2), (A 3) and (A 4) in (A 1)  results in the final expression (24) 
for f&)- 
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